Cdc42 deletion yielded enamel defects by disrupting mitochondria and producing reactive oxygen species in dental epithelium

Cdc42 缺失会破坏线粒体并在牙齿上皮中产生活性氧,从而导致牙釉质缺损

阅读:4
作者:Jinxuan Zheng, Rongcheng Yu, Yiqi Tang, Sihui Su, Sainan Wang, Chenxi Liao, Xuecong Li, Jiabin Liao, Dongsheng Yu, Tingting Ai, Wei Zhao, Vicky Yau, Chufeng Liu, Liping Wu, Yang Cao

Abstract

Developmental defects of enamel are common due to genetic and environmental factors before and after birth. Cdc42, a Rho family small GTPase, regulates prenatal tooth development in mice. However, its role in postnatal tooth development, especially enamel formation, remains elusive. Here, we investigated Cdc42 functions in mouse enamel development and tooth repair after birth. Cdc42 showed highly dynamic temporospatial patterns in the developing incisors, with robust expression in ameloblast and odontoblast layers. Strikingly, epithelium-specific Cdc42 deletion resulted in enamel defects in incisors. Ameloblast differentiation was inhibited, and hypomineralization of enamel was observed upon epithelial Cdc42 deletion. Proteomic analysis showed that abnormal mitochondrial components, phosphotransferase activity, and ion channel regulator activity occurred in the Cdc42 mutant dental epithelium. Reactive oxygen species accumulation was detected in the mutant mice, suggesting that abnormal oxidative stress occurred after Cdc42 depletion. Moreover, Cdc42 mutant mice showed delayed tooth repair and generated less calcified enamel. Mitochondrial dysfunction and abnormal oxygen consumption were evidenced by reduced Apool and Timm8a1 expression, increased Atp5j2 levels, and reactive oxygen species overproduction in the mutant repair epithelium. Epithelium-specific Cdc42 deletion attenuated ERK1/2 signaling in the labial cervical loop. Aberrant Sox2 expression in the mutant labial cervical loop after clipping might lead to delayed tooth repair. These findings suggested that mitochondrial dysfunction, up-regulated oxidative stress, and abnormal ion channel activity may be among multiple factors responsible for the observed enamel defects in Cdc42 mutant incisors. Overall, Cdc42 exerts multidimensional and pivotal roles in enamel development and is particularly required for ameloblast differentiation and enamel matrix formation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。