Piezo1 regulates the regenerative capacity of skeletal muscles via orchestration of stem cell morphological states

Piezo1 通过协调干细胞形态状态来调节骨骼肌的再生能力

阅读:5
作者:Nuoying Ma, Delia Chen, Ji-Hyung Lee, Paola Kuri, Edward Blake Hernandez, Jacob Kocan, Hamd Mahmood, Elisia D Tichy, Panteleimon Rompolas, Foteini Mourkioti

Abstract

Muscle stem cells (MuSCs) are essential for tissue homeostasis and regeneration, but the potential contribution of MuSC morphology to in vivo function remains unknown. Here, we demonstrate that quiescent MuSCs are morphologically heterogeneous and exhibit different patterns of cellular protrusions. We classified quiescent MuSCs into three functionally distinct stem cell states: responsive, intermediate, and sensory. We demonstrate that the shift between different stem cell states promotes regeneration and is regulated by the sensing protein Piezo1. Pharmacological activation of Piezo1 is sufficient to prime MuSCs toward more responsive cells. Piezo1 deletion in MuSCs shifts the distribution toward less responsive cells, mimicking the disease phenotype we find in dystrophic muscles. We further demonstrate that Piezo1 reactivation ameliorates the MuSC morphological and regenerative defects of dystrophic muscles. These findings advance our fundamental understanding of how stem cells respond to injury and identify Piezo1 as a key regulator for adjusting stem cell states essential for regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。