Patterning the consecutive Pd3 to Pd1 on Pd2Ga surface via temperature-promoted reactive metal-support interaction

通过温度促进的反应性金属-载体相互作用在 Pd2Ga 表面上对 Pd3 连续图案化为 Pd1

阅读:6
作者:Yiming Niu, Yongzhao Wang, Junnan Chen, Shiyan Li, Xing Huang, Marc-Georg Willinger, Wei Zhang, Yuefeng Liu, Bingsen Zhang

Abstract

Atom-by-atom control of a catalyst surface is a central yet challenging topic in heterogeneous catalysis, which enables precisely confined adsorption and oriented approach of reactant molecules. Here, exposed surfaces with either consecutive Pd trimers (Pd3) or isolated Pd atoms (Pd1) are architected for Pd2Ga intermetallic nanoparticles (NPs) using reactive metal-support interaction (RMSI). At elevated temperatures under hydrogen, in situ atomic-scale transmission electron microscopy directly visualizes the refacetting of Pd2Ga NPs from energetically favorable (013)/(020) facets to (011)/(002). Infrared spectroscopy and acetylene hydrogenation reaction complementarily confirm the evolution from consecutive Pd3 to Pd1 sites of Pd2Ga catalysts with the concurrent fingerprinting CO adsorption and featured reactivities. Through theoretical calculations and modeling, we reveal that the restructured Pd2Ga surface results from the preferential arrangement of additionally reduced Ga atoms on the surface. Our work provides previously unidentified mechanistic insight into temperature-promoted RMSI and possible solutions to control and rearrange the surface atoms of supported intermetallic catalyst.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。