Deep Learning and Single-Cell Sequencing Analyses Unveiling Key Molecular Features in the Progression of Carotid Atherosclerotic Plaque

深度学习和单细胞测序分析揭示颈动脉粥样硬化斑块进展的关键分子特征

阅读:5
作者:Han Zhang, Yixian Wang, Mingyu Liu, Yao Qi, Shikai Shen, Qingwei Gang, Han Jiang, Yu Lun, Jian Zhang

Abstract

Rupture of advanced carotid atherosclerotic plaques increases the risk of ischaemic stroke, which has significant global morbidity and mortality rates. However, the specific characteristics of immune cells with dysregulated function and proven biomarkers for the diagnosis of atherosclerotic plaque progression remain poorly characterised. Our study elucidated the role of immune cells and explored diagnostic biomarkers in advanced plaque progression using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis. We identified a subcluster of monocytes with significantly increased infiltration in the advanced plaques. Based on the monocyte signature and machine-learning approaches, we accurately distinguished advanced plaques from early plaques, with an area under the curve (AUC) of 0.899 in independent external testing. Using microenvironment cell populations (MCP) counter and non-negative matrix factorisation, we determined the association between monocyte signatures and immune cell infiltration as well as the heterogeneity of the patient. Finally, we constructed a convolutional neural network deep learning model based on gene-immune correlation, which achieved an AUC of 0.933, a sensitivity of 92.3%, and a specificity of 87.5% in independent external testing for diagnosing advanced plaques. Our findings on unique subpopulations of monocytes that contribute to carotid plaque progression are crucial for the development of diagnostic tools for clinical diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。