Nanoplasmonic aptasensor for sensitive, selective, and real-time detection of dopamine from unprocessed whole blood

纳米等离子体适体传感器可灵敏、选择性、实时检测未处理全血中的多巴胺

阅读:5
作者:Aritra Biswas, Sang Lee, Pablo Cencillo-Abad, Manobina Karmakar, Jay Patel, Mahdi Soudi, Debashis Chanda

Abstract

Neurotransmitters are crucial for the proper functioning of neural systems, with dopamine playing a pivotal role in cognition, emotions, and motor control. Dysregulated dopamine levels are linked to various disorders, underscoring the need for accurate detection in research and diagnostics. Single-stranded DNA (ssDNA) aptamers are promising bioreceptors for dopamine detection due to their selectivity, improved stability, and synthesis feasibility. However, discrepancies in dopamine specificity have presented challenges. Here, we surface-functionalized a nano-plasmonic biosensing platform with a dopamine-specific ssDNA aptamer for selective detection. The biosensor, featuring narrowband hybrid plasmonic resonances, achieves high specificity through functionalization with aptamers and passivation processes. Sensitivity and selectivity for dopamine detection are demonstrated across a wide range of concentrations, including in diverse biological samples like protein solutions, cerebrospinal fluid, and whole blood. These results highlight the potential of plasmonic "aptasensors" for developing rapid and accurate diagnostic tools for disease monitoring, medical diagnostics, and targeted therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。