Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson's disease model via AMPK activation

吡咯喹啉醌通过 AMPK 激活促进鱼藤酮诱发的帕金森病模型中的线粒体生物合成

阅读:5
作者:Qiong Cheng #, Juan Chen #, Hui Guo, Jin-Li Lu, Jing Zhou, Xin-Yu Guo, Yue Shi, Yu Zhang, Shu Yu, Qi Zhang, Fei Ding

Abstract

Mitochondrial dysfunction is considered to be one of the important pathogenesis in Parkinson's disease (PD). We previously showed that pyrroloquinoline quinone (PQQ) could protect SH-SY5Y cells and dopaminergic neurons from cytotoxicity and prevent mitochondrial dysfunction in rotenone-induced PD models. In the present study we investigated the mechanisms underlying the protective effects of PQQ in a mouse PD model, which was established by intraperitoneal injection of rotenone (3 mg·kg-1·d-1, ip) for 3 weeks. Meanwhile the mice were treated with PQQ (0.8, 4, 20 mg·kg-1·d-1, ip) right after rotenone injection for 3 weeks. We showed that PQQ treatment dose-dependently alleviated the locomotor deficits and nigral dopaminergic neuron loss in PD mice. Furthermore, PQQ treatment significantly diminished the reduction of mitochondria number and their pathological change in the midbrain. PQQ dose-dependently blocked rotenone-caused reduction in the expression of PGC-1α and TFAM, two key activators of mitochondrial gene transcription, in the midbrain. In rotenone-injured human neuroblastoma SH-SY5Y cells, PTMScan Direct analysis revealed that treatment with PQQ (100 μM) differentially regulated protein phosphorylation; the differentially expressed phosphorylated proteins included the signaling pathways related with adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway. We conducted Western blot analysis and confirmed that AMPK was activated by PQQ both in PD mice and in rotenone-injured SH-SY5Y cells. Pretreatment with AMPK inhibitor dorsomorphin (4 μM) significantly attenuated the protective effect and mitochondrial biogenesis by PQQ treatment in rotenone-injured SH-SY5Y cells. Taken together, PQQ promotes mitochondrial biogenesis in rotenone-injured mice and SH-SY5Y cells via activation of AMPK signaling pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。