Extract of Curculigo capitulata Ameliorates Postmenopausal Osteoporosis by Promoting Osteoblast Proliferation and Differentiation

仙茅提取物促进成骨细胞增殖和分化改善绝经后骨质疏松症

阅读:4
作者:Ying Wang, Xueru Wang, Kaijin Wang, Weiwei Qin, Ning Li

Abstract

Postmenopausal osteoporosis (PMOP) is a bone disease characterized by bone thinning and an increased risk of fractures due to estrogen deficiency. Current PMOP therapies often result in adverse side effects. The traditional medicinal plant Curculigo capitulata is commonly used to strengthen bones and support kidney function, but its role in treating PMOP is not well understood. This study aims to investigate the therapeutic effects of the total extract of Curculigo capitulata (Eocc) on PMOP and to explore the underlying mechanisms. The major components of the extract were identified using HPLC. Transcriptomics was employed to predict potential targets. An osteogenic differentiation model of MC3T3-E1 cells was used in vitro. The osteogenic potential of the Eocc was assessed through CCK-8 cell viability assays, alkaline phosphatase (ALP) staining, Alizarin Red staining, Western blotting, and qPCR. MCF-7 and HEK-293 cells were utilized to evaluate the estrogen-like activity of Eocc. Apoptosis rates were detected by flow cytometry. In vivo, a bilateral ovariectomized mouse model of PMOP was used to further validate the in vitro findings through histopathological analysis and WB results. The results demonstrated that the Eocc promoted the proliferation of MC3T3-E1 cells, increased ALP activity, and stimulated the formation of osteogenic mineralized nodules. It also upregulated the expression of osteogenic markers (Runx2, OCN, OPN, and BSP) at both the protein and mRNA levels. The Eocc induced the activation of ERα both in vitro and in vivo, initiating the Src/PI3K/AKT signaling pathway, leading to the phosphorylation of GSK3β and subsequent osteogenesis. The activation of this pathway also stimulated the phosphorylation of mTOR and p70S6K while downregulating cleaved caspase-3 and caspase-9. Additionally, the Eocc reduced apoptosis during osteogenic differentiation and promoted cell proliferation. These findings suggest that the Eocc facilitates osteoblast proliferation and differentiation, improving bone integrity in PMOP mice, and may represent a promising therapeutic candidate for managing PMOP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。