Semaphorin 3D promotes pancreatic ductal adenocarcinoma progression and metastasis through macrophage reprogramming

Semaphorin 3D 通过巨噬细胞重编程促进胰腺导管腺癌进展和转移

阅读:5
作者:Noelle R J Thielman, Vanessa Funes, Sanjana Davuluri, Hector E Ibanez, Wei-Chih Sun, Juan Fu, Keyu Li, Stephen Muth, Xingyi Pan, Kenji Fujiwara, Dwayne L Thomas Ii, MacKenzie Henderson, Selina Shiqing Teh, Qingfeng Zhu, Elizabeth Thompson, Elizabeth M Jaffee, Alex Kolodkin, Fengxi Meng, Lei Zheng1

Abstract

Axon guidance molecules are frequently altered in pancreatic ductal adenocarcinoma (PDA) and influence PDA progression. However, the molecular mechanism remained unclear. Using genetically engineered mouse models to examine semaphorin 3D (SEMA3D), we identified a dual role for tumor- and nerve-derived SEMA3D in the malignant transformation of pancreatic epithelial cells and invasive PDA development. Pancreatic-specific knockout of the SEMA3D gene from the KRASG12D and TP53R172H mutation knock-in, PDX1-Cre(KPC) mouse model demonstrated delayed tumor initiation, prolonged survival, absence of metastasis, and reduced M2 macrophage expression. Mechanistically, tumor- and nerve-derived SEMA3D indirectly reprograms macrophages through KRASMUT-dependent ARF6 signaling in PDA cells, resulting in increased lactate production, which is sensed by GPCR132 on macrophages to stimulate protumorigenic M2 polarization. Multiplex immunohistochemistry demonstrated increased M2-polarized macrophages proximal to nerves in SEMA3D-expressing human PDA tissue. This study suggests that altered SEMA3D expression leads to an acquisition of cancer-promoting functions, and nerve-derived SEMA3D is "hijacked" by PDA cells to support growth and metastasis in a KRASMUT-dependent manner.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。