VEGF drives cancer-initiating stem cells through VEGFR-2/Stat3 signaling to upregulate Myc and Sox2

VEGF 通过 VEGFR-2/Stat3 信号上调 Myc 和 Sox2 来驱动癌症起始干细胞

阅读:5
作者:D Zhao, C Pan, J Sun, C Gilbert, K Drews-Elger, D J Azzam, M Picon-Ruiz, M Kim, W Ullmer, D El-Ashry, C J Creighton, J M Slingerland

Abstract

Vascular endothelial growth factor-A (VEGF), a potent angiogenic factor, is also implicated in self-renewal in several normal tissue types. VEGF has been shown to drive malignant stem cells but mechanisms thereof and tumor types affected are not fully characterized. Here, we show VEGF promotes breast and lung cancer stem cell (CSC) self-renewal via VEGF receptor-2 (VEGFR-2)/STAT3-mediated upregulation of Myc and Sox2. VEGF increased tumor spheres and aldehyde dehydrogenase activity, both proxies for stem cell function in vitro, in triple-negative breast cancer (TNBC) lines and dissociated primary cancers, and in lung cancer lines. VEGF exposure before injection increased breast cancer-initiating cell abundance in vivo yielding increased orthotopic tumors, and increased metastasis from orthotopic primaries and following tail vein injection without further VEGF treatment. VEGF rapidly stimulated VEGFR-2/JAK2/STAT3 binding and activated STAT3 to bind MYC and SOX2 promoters and induce their expression. VEGFR-2 knockdown or inhibition abrogated VEGF-mediated STAT3 activation, MYC and SOX2 induction and sphere formation. Notably, knockdown of either STAT3, MYC or SOX2 impaired VEGF-upregulation of pSTAT3, MYC and SOX2 expression and sphere formation. Each transcription factor, once upregulated, appears to promote sustained activation of the others, creating a feed-forward loop to drive self-renewal. Thus, in addition to angiogenic effects, VEGF promotes tumor-initiating cell self-renewal through VEGFR-2/STAT3 signaling. Analysis of primary breast and lung cancers (>1300 each) showed high VEGF expression, was prognostic of poor outcome and strongly associated with STAT3 and MYC expression, supporting the link between VEGF and CSC self-renewal. High-VEGF tumors may be most likely to escape anti-angiogenics by upregulating VEGF, driving CSC self-renewal to re-populate post-treatment. Our work highlights the need to better define VEGF-driven cancer subsets and supports further investigation of combined therapeutic blockade of VEGF or VEGFR-2 and JAK2/STAT3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。