SPECTROSCOPIC AND ELECTROCHEMICAL PROPERTIES OF 2-AMINOPHENOTHIAZINE

2-氨基吩噻嗪的光谱和电化学性质

阅读:7
作者:Luis Piñero, Xiomara Calderón, Juan Rodríguez, Ileana Nieves, Rafael Arce, Carmelo García, Rolando Oyola

Abstract

Phenothiazines derivatives are versatile compounds that are used in many fields, depending on the type and position of the substitution on the parent molecule. The photochemical, photophysical and electrochemical properties of several phenothiazine derivatives have been previously reported in detail. However, no reports have been presented for 2-aminophenothiazine (APH), a candidate that provides for the further chemical modification and the introduction of specific substituents. In this work, the photophysical and electrochemical properties of APH were measured in acetonitrile. The APH ground state absorption and fluorescence spectrum (phi(f) < 0.01) are similar to the corresponding that of PH parent molecule. A mono exponential decay fluorescence lifetime of 0.65 ns was determined for APH in acetonitrile. Characterization of the 355 nm nanosecond laser flash photolysis transient species reveals the presence of the triplet-triplet transient intermediate with a high intersystem crossing quantum yield (phi(T) = 0.72 +/- 0.07), indicating that the APH main excited state deactivation channel is intersystem crossing. The oxidation potential of APH is lower than phenothiazine parent molecule ((0.38 V vs 0.69 V vs Ag/AgCl(sat)). Altogether, these results show that APH has photochemical and photophysical properties similar to the phenothiazine parent molecule, but with the possibility of providing an amino functionality at 2-position for further chemical modification.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。