Effects of triptolide on bone marrow-derived mesenchymal stem cells from patients with multiple myeloma

雷公藤甲素对多发性骨髓瘤患者骨髓间充质干细胞的影响

阅读:8
作者:Haiying Wu, Yuanting Wu, Li Ren, Wo Zhai, Yuxia Jiang, Shuping Guo, Diehong Tao, Chuanyong Su, Zhilu Chen, Huifang Jiang

Abstract

Triptolide (TPL), an extract of the Chinese herb Tripterygium wilfordii Hook F, is a potent anti-inflammatory agent that further possesses anticancer activity. Its antiproliferative effects are well established. Only few studies have focused on TPL as a potential treatment in multiple myeloma (MM). In the current study, bone marrow-derived mesenchymal stem cells (BMMSCs) from patients with MM were isolated and treated with TPL at varying concentrations. Thalidomide is currently used as a positive control drug in the treatment of MM. Cell Counting kit-8 assays were performed to assess proliferation activity and flow cytometry with Annexin V-fluorescein/propidium iodide was used to detect cell apoptosis of TPL-treated BMMSCs. Reverse transcription-quantitative polymerase chain reaction assays were applied to measure interleukin (IL)-6, IL-1β and stem cell factor (SCF or Kit ligand) mRNA expression and western blot assays were performed to analyze transcription factor p65 (P65) expression in TPL-treated BMMSCs. ELISA was applied to measure vascular endothelial growth factor (VEGF) levels in the supernatant of the cultured and treated BMMSCs. TPL treatment significantly inhibited BMMSC proliferation compared with the untreated control (P<0.05). At 48 h following TPL treatment, a Cell Counting kit-8 study was performed and the IC50 value was determined at 101.55±2.45 ng/ml. Apoptotic rates were observed to increase with increasing concentrations of TPL (P<0.001), and IL-6, IL-1β and SCF mRNA expression was significantly decreased with increasing TPL (P<0.001). P65 expression following TPL treatment was significantly decreased compared with the untreated control (P<0.05). VEGF levels were significantly reduced in the presence of increasing amounts of TPL (P<0.05). These findings suggest that TPL inhibited BMMSC growth and improved the bone marrow hematopoietic microenvironment by decreasing IL-6, IL-1β and SCF mRNA expression, subsequently inhibiting the proliferation of MM cells. Therefore, TPL may be used in the future to treat patients with MM.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。