Multidrug resistance protein 4 mediates cAMP efflux from rat preglomerular vascular smooth muscle cells

多药耐药蛋白 4 介导大鼠肾小球前血管平滑肌细胞 cAMP 流出

阅读:7
作者:Dongmei Cheng, Jin Ren, Edwin K Jackson

Abstract

1. Previous studies have shown that stimulation of adenylyl cyclase in preglomerular vascular smooth muscle cells (PGVSMC) increases extracellular cAMP; however, the mechanism by which PGVSMC transport intracellular cAMP into the extracellular milieu is unknown. 2. We hypothesize that multidrug resistance protein (MRP) 4 is the primary transporter mediating efflux of intracellular cAMP from PGVSMC. 3. Both reverse transcription-polymerase chain reaction and real-time polymerase chain reaction detected MRP4 mRNA in PGVSMC in culture. Moreover, western blotting using an antibody specific for MRP4 gave rise to a 150 kDa signal, consistent with the presence of MRP4 protein in PGVSMC. 4. Specifically designed short interference (si) RNA reduced MRP4 mRNA expression by 71% (P = 0.0075) and MRP4 protein by 80% (P = 0.0004). 5. Isoproterenol (1 micromol/L) increased intracellular cAMP, which resulted in efflux of cAMP into the medium. The siRNA knockdown of MRP4 significantly reduced basal extracellular cAMP and nearly abolished isoproterenol-induced increases in extracellular cAMP (P = 0.0143, interaction between isoproterenol and MRP4 siRNA in two-factor analysis of variance). In isoproterenol-treated cells, MRP4 siRNA decreased the ratio of extracellular cAMP to intracellular cAMP by 72% (P = 0.0019). 6. We conclude that MRP4 is the dominant cAMP transporter in PGVSMC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。