In-Cell Penetration Selection-Mass Spectrometry Produces Noncanonical Peptides for Antisense Delivery

细胞内渗透选择质谱法产生用于反义传递的非规范肽

阅读:8
作者:Carly K Schissel, Charlotte E Farquhar, Andrei Loas, Annika B Malmberg, Bradley L Pentelute

Abstract

Peptide-mediated delivery of macromolecules in cells has significant potential therapeutic benefits, but no therapy employing cell-penetrating peptides (CPPs) has reached the market after 30 years of investigation due to challenges in the discovery of new, more efficient sequences. Here, we demonstrate a method for in-cell penetration selection-mass spectrometry (in-cell PS-MS) to discover peptides from a synthetic library capable of delivering macromolecule cargo to the cytosol. This method was inspired by recent in vivo selection approaches for cell-surface screening, with an added spatial dimension resulting from subcellular fractionation. A representative peptide discovered in the cytosolic extract, Cyto1a, is nearly 100-fold more active toward antisense phosphorodiamidate morpholino oligomer (PMO) delivery compared to a sequence identified from a whole cell extract, which includes endosomes. Cyto1a is composed of d-residues and two non-α-amino acids, is more stable than its all-l isoform, and is less toxic than known CPPs with comparable activity. Pulse-chase and microscopy experiments revealed that while the PMO-Cyto1a conjugate is likely taken up by endosomes, it can escape to localize to the nucleus without nonspecifically releasing other endosomal components. In-cell PS-MS introduces a means to empirically discover unnatural synthetic peptides for subcellular delivery of therapeutically relevant cargo.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。