Mechanism of the blood-brain barrier modulation by cadherin peptides

钙粘蛋白肽调节血脑屏障的机制

阅读:8
作者:Elinaz Farokhi, Ahmed L Alaofi, Vivitri D Prasasty, Filia Stephanie, Marlyn D Laksitorini, Krzysztof Kuczera, Teruna J Siahaan

Aim

This study was aimed at finding the binding site on the human E-cadherin for Ala-Asp-Thr Cyclic 5 (ADTC5), ADTC7, and ADTC9 peptides as blood-brain barrier modulator (BBBM) for determining their mechanism of action in modulating the blood-brain barrier (BBB).

Conclusions

These peptides bind the domain swapping region of the EC1 domain to inhibit the trans-cadherin interaction that creates intercellular junction modulation to increase the BBB paracellular porosity.

Methods

ADTC7 and ADTC9 were derivatives of ADTC5 where the Val6 residue in ADTC5 was replaced by Glu6 and Tyr6 residues, respectively. The binding properties of ADTC5, ADTC7, and ADTC9 to the extracellular-1 (EC1) domain of E-cadherin were evaluated using chemical shift perturbation (CSP) method in the two dimensional (2D) 1H-15N-heteronuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy. Molecular docking experiments were used to determine the binding sites of these peptides to the EC1 domain of E-cadherin.

Results

This study indicates that ADTC5 has the highest binding affinity to the EC1 domain of E-cadherin compared to ADTC7 and ADTC9, suggesting the importance of the Val6 residue as shown in our previous in vitro study. All three peptides have a similar binding site at the hydrophobic binding pocket where the domain swapping occurs. ADTC5 has a higher overlapping binding site with ADTC7 than that of ADTC9. Binding of ADTC5 on the EC1 domain influences the conformation of the EC1 C-terminal tail. Conclusions: These peptides bind the domain swapping region of the EC1 domain to inhibit the trans-cadherin interaction that creates intercellular junction modulation to increase the BBB paracellular porosity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。