The G1-S transition is promoted by Rb degradation via the E3 ligase UBR5

Rb 通过 E3 连接酶 UBR5 降解促进 G1-S 转变

阅读:5
作者:Shuyuan Zhang, Lucas Fuentes Valenzuela, Evgeny Zatulovskiy, Lise Mangiante, Christina Curtis, Jan M Skotheim

Abstract

Mammalian cells make the decision to divide at the G1-S transition in response to diverse signals impinging on the retinoblastoma protein Rb, a cell cycle inhibitor and tumor suppressor. Passage through the G1-S transition is initially driven by Rb inactivation via phosphorylation and by Rb's decreasing concentration in G1. While many studies have identified the mechanisms of Rb phosphorylation, the mechanism underlying Rb's decreasing concentration in G1 was unknown. Here, we found that Rb's concentration decrease in G1 requires the E3 ubiquitin ligase UBR5. UBR5 knockout cells have increased Rb concentration in early G1, exhibited a lower G1-S transition rate, and are more sensitive to inhibition of cyclin-dependent kinase 4/6 (Cdk4/6). This last observation suggests that UBR5 inhibition can strengthen the efficacy of Cdk4/6 inhibitor-based cancer therapies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。