Novel Zinc / Tungsten Carbide Nanocomposite as Bioabsorbable Implant

新型锌/碳化钨纳米复合材料作为生物可吸收植入物

阅读:7
作者:Zeyi Guan, Chase S Linsley, Injoo Hwang, Gongcheng Yao, Benjamin M Wu, Xiaochun Li

Abstract

There is a lack of bioabsorbable materials with adequate mechanical strength suitable for implant applications that provide temporary support while tissue integrity is restored, especially for pediatric applications. Bioabsorbable metals have emerged as an attractive choice due to their combination of strength, ductility, and biocompatibility in vivo. Zinc has shown great promise as a bioabsorbable metal, but the weak mechanical properties of pure zinc limit its application as an implant material. This study investigates zinc-tungsten carbide (Zn-WC) nanocomposite as a novel material for bioabsorbable metallic implants. Ultrasound-assisted powder compaction was used to fabricate Zn-WC nanocomposites. This study includes the material characterization of microstructure, microhardness, and degradability. Results showed that tungsten carbide nanoparticles enhanced the mechanical properties of Zn, and maintained the favorable corrosion rate of pure Zn. These results encourage further investigation of Zn-WC nanocomposites for biomedical applications with the ultimate goal of creating safe and efficacious bioabsorbable metallic implants for many clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。