Corrosion resistance of aluminum against acid activation in 1.0 M HCl by symmetrical ball - type zinc phthalocyanine

对称球型锌酞菁对铝在1.0 M HCl溶液中的抗酸活化腐蚀性能

阅读:8
作者:Najah F H Alrasheedi, Ismail Abdulazeez, Shamsuddeen A Haladu, Mohammed A Gondal, Khaled M AlAqad, Salwa J Kamal, Salha N Alharthi, Asma M Elsharif

Abstract

The inhibition effect of symmetrical Ball - type Zinc Phthalocyanine on Aluminum in 1mol/L hydrochloric acid was analyzed by electrochemical techniques. A novel ball-type zinc phthalocyanine (Zn-Pc) inhibitor has been synthesized and verified utilizing FTIR, nuclear magnetic resonance (1H NMR and 13C NMR), MALDI-TOF MS, and absorption spectroscopy (UV-Vis). In addition, laser-induced breakdown and photoluminescence spectroscopy were employed for additional study. Weight loss technique was employed to investigate the corrosion inhibition effectiveness of the synthesized Zn-Pc on Aluminum in 1mol/L hydrochloric acid at the range of variation temperatures (293-333 K). The inhibition efficiency of Zn-Pc increased with higher concentrations of Zn-Pc and decreased as the temperature increased. Furthermore, Zn-Pc demonstrated outstanding outcomes, achieving 72.9% at a very low inhibitor concentration (0.4 mmol/L) at 298 K. The experimental data for Zn-Pc Aluminum in 1mol/L hydrochloric acid obeys the Langmuir adsorption isotherm. Moreover, the corrosion system's thermodynamic parameters and activation energy were determined. Quantum chemical calculations applying the (DFT) Density Functional Theory method was conducted and applied in this study. These calculations played a pivotal role in elucidating molecular structures and reactivity patterns. Through DFT, numerous reactivity indicators were computed, providing valuable insights into the chemical behavior of the studied compounds. These indicators, such as frontier molecular orbitals, electron density, and molecular electrostatic potential, were subsequently correlated with experimental data.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。