Biofunctional Polymer Coated Au Nanoparticles Prepared via RAFT-Assisted Encapsulating Emulsion Polymerization and Click Chemistry

通过 RAFT 辅助包覆乳液聚合和点击化学制备生物功能聚合物包覆的金纳米粒子

阅读:7
作者:Sónia O Pereira, Tito Trindade, Ana Barros-Timmons

Abstract

The use of reversible addition-fragmentation chain transfer (RAFT)-assisted encapsulating emulsion polymerization (REEP) has been explored to prepare diverse types of colloidal stable core-shell nanostructures. A major field of application of such nanoparticles is in emergent nanomedicines, which require effective biofunctionalization strategies, in which their response to bioanalytes needs to be firstly assessed. Herein, functional core-shell nanostructures were prepared via REEP and click chemistry. Thus, following the REEP strategy, colloidal gold nanoparticles (Au NPs, d = 15 nm) were coated with a poly(ethylene glycol) methyl ether acrylate (PEGA) macroRAFT agent containing an azide (N3) group to afford N3-macroRAFT@Au NPs. Then, chain extension was carried out from the NPs surface via REEP, at 44 °C under monomer-starved conditions, to yield N3-copolymer@Au NPs-core-shell type structures. Biotin was anchored to N3-copolymer@Au NPs via click chemistry using an alkynated biotin to yield biofunctionalized Au nanostructures. The response of the ensuing biotin-copolymer@Au NPs to avidin was followed by visible spectroscopy, and the copolymer-biotin-avidin interaction was further studied using the Langmuir-Blodgett technique. This research demonstrates that REEP is a promising strategy to prepare robust functional core-shell plasmonic nanostructures for bioapplications. Although the presence of azide moieties requires the use of low polymerization temperature, the overall strategy allows the preparation of tailor-made plasmonic nanostructures for applications of biosensors based on responsive polymer shells, such as pH, temperature, and photoluminescence quenching. Moreover, the interaction of biotin with avidin proved to be time dependent.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。