Control of striatal circuit development by the chromatin regulator Zswim6

染色质调节器 Zswim6 控制纹状体回路发育

阅读:8
作者:Kyuhyun Choi, Nathan T Henderson, Emily R Feierman, Sean Louzon, Jamie Galanaugh, Felicia Davatolhagh, Isha Bhandaru, David J Tischfield, Stewart A Anderson, Erica Korb, Marc V Fuccillo

Abstract

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in Zswim6 are associated with intellectual disability and autism. We demonstrate that ZSWIM6 localizes to the nucleus where it associates with repressive chromatin regulators. Disruption of Zswim6 in ventral telencephalic progenitors leads to increased chromatin accessibility and transcriptional dysregulation. Ablating Zswim6 in either striatal direct or indirect pathway spiny projection neurons resulted in similar cell-autonomous changes in excitatory but not inhibitory synaptic transmission. Specifically, Zswim6 disruption altered the desensitization properties of AMPA receptors, leading to enhanced synaptic recruitment of SPNs, explaining SPN-subtype specific effects on activity and behavioral sub-structure. Last, adult deletion of Zswim6 identified a continuing role in the maintenance of mature striatal synapses. Together, we describe a mechanistic role for Zswim6 in the epigenetic control of striatal synaptic development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。