Van der Waals semiconductor InSe plastifies by martensitic transformation

范德华半导体 InSe 通过马氏体转变塑化

阅读:7
作者:Yandong Sun, Yupeng Ma, Jin-Yu Zhang, Tian-Ran Wei, Xun Shi, David Rodney, Ben Xu

Abstract

Inorganic semiconductor materials are crucial for modern technologies, but their brittleness and limited processability hinder the development of flexible, wearable, and miniaturized electronics. The recent discovery of room-temperature plasticity in some inorganic semiconductors offers a promising solution, but the deformation mechanisms remain controversial. Here, we investigate the deformation of indium selenide, a two-dimensional van der Waals semiconductor with substantial plasticity. By developing a machine-learned deep potential, we perform atomistic simulations that capture the deformation features of hexagonal indium selenide upon out-of-plane compression. Unexpectedly, we find that indium selenide plastifies through a martensitic transformation; that is, the layered hexagonal structure is converted to a tetragonal lattice with specific orientation relationship. This observation is corroborated by high-resolution experimental observations and theory. It suggests a change of paradigm, where the design of new plastically deformable inorganic semiconductors can focus on compositions and structures that facilitate phase transformations, going beyond the conventional dislocation slip.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。