Enhanced bone regeneration associated with decreased apoptosis in mice with partial HIF-1alpha deficiency

部分 HIF-1alpha 缺乏的小鼠骨再生能力增强,细胞凋亡减少

阅读:4
作者:David E Komatsu, Marta Bosch-Marce, Gregg L Semenza, Michael Hadjiargyrou

Conclusions

We conclude that partial HIF-1alpha deficiency results in decreased chondrocytic and osteoblastic apoptosis, thereby allowing the development of larger, stiffer calluses and enhancing bone regeneration. Furthermore, apoptosis inhibition may be a promising target for developing new treatments to accelerate bone regeneration.

Methods

Fixed femoral fractures were generated in mice with partial HIF-1alpha deficiency (HIF-1alpha+/-) and wildtype littermates (HIF-1alpha+/+). Fracture calluses and intact contralateral femurs from postfracture days (PFDs) 21 and 28 (N=5-10) were subjected to microCT evaluation and four-point bending to assess morphometric and mechanical properties. Molecular analyses were carried out on PFD 7, 10, and 14 samples (N=3) to determine differential gene expression at both mRNA and protein levels. Finally, TUNEL staining was performed on PFD 14 samples (N=2) to elucidate differential apoptosis.

Results

Surprisingly, fracture calluses from HIF-1alpha+/- mice exhibited greater mineralization and were larger, stronger, and stiffer. Microarray analyses focused on hypoxia-induced genes revealed differential expression (between genotypes) of several genes associated with the apoptotic pathway. Real-time PCR confirmed these results, showing higher expression of proapoptotic protein phosphatase 2a (PP2A) and lower expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL2) in HIF-1alpha+/+ calluses. Subsequent TUNEL staining showed that HIF-1alpha+/+ calluses contained larger numbers of TUNEL+ chondrocytes and osteoblasts than HIF-1alpha+/- calluses. Conclusions: We conclude that partial HIF-1alpha deficiency results in decreased chondrocytic and osteoblastic apoptosis, thereby allowing the development of larger, stiffer calluses and enhancing bone regeneration. Furthermore, apoptosis inhibition may be a promising target for developing new treatments to accelerate bone regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。