Phase controlled synthesis of bifunctional TiO2 nanocrystallites via d-mannitol for dye-sensitized solar cells and heterogeneous catalysis

通过 d-甘露醇进行双功能 TiO2 纳米晶体的相控合成,用于染料敏化太阳能电池和异相催化

阅读:8
作者:Abdullah M Al-Enizi, T A J Siddiqui, Shoyebmohamad F Shaikh, Mohd Ubaidullah, Ayman Yousef, Rajaram S Mane, Abu Ul Hassan Sarwar Rana

Abstract

The crystal architecture of TiO2 was successfully tailored via a low-temperature (≤200 °C) hydrothermal process in the presence of d-mannitol for feasible applications in dye-sensitized solar cells (DSSCs) and heterogeneous catalysis. In the development of anatase-TiO2 (A-TiO2), d-mannitol does not merely acts as a complexing agent to manage the zigzag chains of octahedral TiO6 2- with dominant edge sharing but also performs as a capping agent by influencing the hydrolysis process during nucleation, as confirmed by Fourier-transform infrared spectroscopy and dynamic light scattering studies. After physical measurements, the as-synthesized nanocrystallites (NCs) of A-TiO2 were used in DSSCs, where a fascinating power conversion efficiency (PCE) of 6.0% was obtained, which showed excellent performance compared with commercial anatase-TiO2 (CA-TiO2: 5.7%) and rutile-TiO2 (R-TiO2) obtained without d-mannitol (3.7%). Moreover, a smart approach was developed via the A-TiO2 catalyst to synthesize pharmaceutically important C-3 alkylated 4-hydroxycoumarins through different activated secondary alcohols under solvent-free, and heat/visible light conditions. In addition, the catalytic activity of the so-produced A-TiO2 catalyst under solvent-free conditions exhibited remarkable recyclability with up to five consecutive runs with negligible reduction, which is superior to existing reports, and clearly reveals the novelty, and green, sustainable nature of the as-synthesized A-TiO2 catalyst. A plausible reaction mechanism of both coupling partners was activated through the interaction with the A-TiO2 catalyst to produce valuable C-3 alkylated 4-hydroxycoumarins with 95% yield and high selectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。