A bacterial spermidine biosynthetic pathway via carboxyaminopropylagmatine

通过羧氨基丙基胍基丁胺的细菌亚精胺生物合成途径

阅读:8
作者:Huachao Xi, Xiaoqun Nie, Fang Gao, Xinxin Liang, Hu Li, Haiyan Zhou, Yujie Cai, Chen Yang

Abstract

Spermidine, a ubiquitous polyamine, is known to be required for critical physiological functions in bacteria. Two principal pathways are known for spermidine biosynthesis, both of which involve aminopropylation of putrescine. Here, we identified a spermidine biosynthetic pathway via a previously unknown metabolite, carboxyaminopropylagmatine (CAPA), in a model cyanobacterium Synechocystis sp. PCC 6803 through an approach combining 13C and 15N tracers, metabolomics, and genetic and biochemical characterization. The CAPA pathway starts with reductive condensation of agmatine and l-aspartate-β-semialdehyde into CAPA by a previously unknown CAPA dehydrogenase, followed by decarboxylation of CAPA to form aminopropylagmatine, and ends with conversion of aminopropylagmatine to spermidine by an aminopropylagmatine ureohydrolase. Thus, the pathway does not involve putrescine and depends on l-aspartate-β-semialdehyde as the aminopropyl group donor. Genomic, biochemical, and metagenomic analyses showed that the CAPA-pathway genes are widespread in 15 different phyla of bacteria distributed in marine, freshwater, and other ecosystems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。