Measuring conductance switching in single proteins using quantum tunneling

利用量子隧穿测量单个蛋白质的电导转换

阅读:10
作者:Longhua Tang, Long Yi, Tao Jiang, Ren Ren, Binoy Paulose Nadappuram, Bintian Zhang, Jian Wu, Xu Liu, Stuart Lindsay, Joshua B Edel, Aleksandar P Ivanov

Abstract

Interpreting the electrical signatures of single proteins in electronic junctions has facilitated a better understanding of the intrinsic properties of proteins that are fundamental to chemical and biological processes. Often, this information is not accessible using ensemble and even single-molecule approaches. In addition, the fabrication of nanoscale single-protein junctions remains challenging as they often require sophisticated methods. We report on the fabrication of tunneling probes, direct measurement, and active control (switching) of single-protein conductance with an external field in solution. The probes allowed us to bridge a single streptavidin molecule to two independently addressable, biotin-terminated electrodes and measure single-protein tunneling response over long periods. We show that charge transport through the protein has multiple conductive pathways that depend on the magnitude of the applied bias. These findings open the door for the reliable fabrication of protein-based junctions and can enable their use in future protein-embedded bioelectronics applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。