DmSAS is required for sialic acid biosynthesis in cultured Drosophila third instar larvae CNS neurons

DmSAS 是培养的果蝇三龄幼虫中枢神经系统神经元中唾液酸生物合成所必需的

阅读:6
作者:Annelise E von Bergen Granell, Karen B Palter, Ihan Akan, Udayanath Aich, Kevin J Yarema, Michael J Betenbaugh, William B Thornhill, Esperanza Recio-Pinto

Abstract

Sialylation is an important carbohydrate modification of glycoconjugates that has been shown to modulate many cellular/molecular interactions in vertebrates. In Drosophila melanogaster (Dm), using sequence homology, several enzymes of the sialylation pathway have been cloned and their function tested in expression systems. Here we investigated whether sialic acid incorporation in cultured Dm central nervous system (CNS) neurons required endogenously expressed Dm sialic acid synthase (DmSAS). We compared neurons derived from wild type Dm larvae with those containing a DmSAS mutation (148 bp deletion). The ability of these cells to produce Sia5NAz (sialic acid form) from Ac(4)ManNAz (azide-derivatized N-acetylmannosamine) and incorporate it into their glycoconjugates was measured by tagging the azide group of Sia5NAz with fluorescent agents via Click-iT chemistry. We found that most of the wild type Dm CNS neurons incorporated Sia5NAz into their glycoconjugates. Sialic acid incorporation was higher at the soma than at the neurite and could also be detected at perinuclear regions and the plasma membrane. In contrast, neurons from the DmSAS mutant did not incorporate Sia5NAz unless DmSAS was reintroduced (rescue mutant). Most of the neurons expressed α2,6-sialyltransferase. These results confirm that the mutation was a null mutation and that no redundant sialic acid biosynthetic activity exists in Dm cells, i.e., there is only one DmSAS. They also provide the strongest proof to date that DmSAS is a key enzyme in the biosynthesis of sialic acids in Dm CNS neurons, and the observed subcellular distribution of the newly synthesized sialic acids offers insights into their biological function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。