Conclusion
Ozone exerts cardioprotective and dermatoprotective effects during incubation with doxorubicin, and the involved mechanisms are mediated by its anti-inflammatory effects. The overall picture described herein is a pilot study for preclinical studies in oncology.
Methods
Human skin fibroblast cells and human fetal cardiomyocytes were exposed to doxorubicin at subclinical concentration (100 nM) alone or combined with ozone concentrated from 10 up to 50 μg/mL. Cell viability and multiple anti-inflammatory studies were performed in both cell lines, with particular attention on the quantification of interleukins, leukotriene B4, NF-κB, and Nrf2 expressions during treatments.
Results
Ozone decreased significantly the cytotoxicity of doxorubicin in skin fibroblasts and cardiomyocytes after 24 h of incubation. The best cytoprotective effect of ozone was reached to 30 μg/mL with a plateau phase at higher concentration. Ozone also demonstrated anti-inflammatory effects decreasing significantly the interleukins and proinflammatory mediators in both cells.
