Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer

使用低频泵换能器支持的超声成像探头进行组织碎裂病变形成

阅读:6
作者:Kuang-Wei Lin, Timothy L Hall, Zhen Xu, Charles A Cain

Abstract

When histotripsy pulses shorter than 2 cycles are applied, the formation of a dense bubble cloud relies only on the applied peak negative pressure (p-) exceeding the "intrinsic threshold" of the medium (absolute value of 26-30 MPa in most soft tissues). It has been found that a sub-threshold high-frequency probe pulse (3 MHz) can be enabled by a sub-threshold low-frequency pump pulse (500 kHz) where the sum exceeds the intrinsic threshold, thus generating lesion-producing dense bubble clouds ("dual-beam histotripsy"). Here, the feasibility of using an imaging transducer to provide the high-frequency probe pulse in the dual-beam histotripsy approach is investigated. More specifically, an ATL L7-4 imaging transducer (Philips Healthcare, Andover, MA, USA), pulsed by a V-1 Data Acquisition System (Verasonics, Redmond, WA, USA), was used to generate the high-frequency probe pulses. The low-frequency pump pulses were generated by a 20-element 345-kHz array transducer, driven by a custom high-voltage pulser. These dual-beam histotripsy pulses were applied to red blood cell tissue-mimicking phantoms at a pulse repetition frequency of 1 Hz, and optical imaging was used to visualize bubble clouds and lesions generated in the red blood cell phantoms. The results indicated that dense bubble clouds (and resulting lesions) were generated when the p- of the sub-threshold pump and probe pulses combined constructively to exceed the intrinsic threshold. The average size of the smallest reproducible lesions using the imaging probe pulse enabled by the sub-threshold pump pulse was 0.7 × 1.7 mm, whereas that using the supra-threshold pump pulse alone was 1.4 × 3.7 mm. When the imaging transducer was steered laterally, bubble clouds and lesions were steered correspondingly until the combined p- no longer exceeded the intrinsic threshold. These results were also validated with ex vivo porcine liver experiments. Using an imaging transducer for dual-beam histotripsy can have two advantages: (i) lesion steering can be achieved using the steering of the imaging transducer (implemented with the beamformer of the accompanying programmable ultrasound system), and (ii) treatment can be simultaneously monitored when the imaging transducer is used in conjunction with an ultrasound imaging system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。