Quantitative Succinyl-Proteome Profiling of Turnip (Brassica rapa var. rapa) in Response to Cadmium Stress

萝卜 (Brassica rapa var. rapa) 对镉胁迫的琥珀酰蛋白质组定量分析

阅读:5
作者:Xiong Li, Danni Yang, Yunqiang Yang, Guihua Jin, Xin Yin, Yan Zheng, Jianchu Xu, Yongping Yang

Abstract

Protein post-translational modification (PTM) is an efficient biological mechanism to regulate protein structure and function, but its role in plant responses to heavy metal stress is poorly understood. The present study performed quantitative succinyl-proteome profiling using liquid chromatography−mass spectrometry analysis to explore the potential roles of lysine succinylation modification in turnip seedlings in response to cadmium (Cd) stress (20 μM) under hydroponic conditions over a short time period (0−8 h). A total of 547 succinylated sites on 256 proteins were identified in the shoots of turnip seedlings. These succinylated proteins participated in various biological processes (e.g., photosynthesis, tricarboxylic acid cycle, amino acid metabolism, and response to stimulation) that occurred in diverse cellular compartments according to the functional classification, subcellular localization, and protein interaction network analysis. Quantitative analysis showed that the intensities of nine succinylation sites on eight proteins were significantly altered (p < 0.05) in turnip shoots after 8 h of Cd stress. These differentially succinylated sites were highly conserved in Brassicaceae species and mostly located in the conserved domains of the proteins. Among them, a downregulated succinylation site (K150) in the glycolate oxidase protein (Gene0282600.1), an upregulated succinylation site (K396) in the catalase 3 protein (Gene0163880.1), and a downregulated succinylation site (K197) in the glutathione S-transferase protein (Gene0315380.1) may have contributed to the altered activity of the corresponding enzymes, which suggests that lysine succinylation affects the Cd detoxification process in turnip by regulating the H2O2 accumulation and glutathione metabolism. These results provide novel insights into understanding Cd response mechanisms in plants and important protein modification information for the molecular-assisted breeding of Brassica varieties with distinct Cd tolerance and accumulation capacities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。