Hydrogel capsule-based digital quantitative polymerase chain reaction

基于水凝胶胶囊的数字定量聚合酶链式反应

阅读:5
作者:Zheng Lin Tan, Masato Yasuura, Yukichi Horiguchi, Hiroki Ashiba, Takashi Fukuda

Abstract

Droplet digital PCR (ddPCR) is accurate in nucleic acid quantification owing to its linearity and high sensitivity. Amplification of nucleic acid in droplets, however, is limited by the stability of droplets against thermal cycling. While the use of fluorinated oil or supplementation of surfactant could improve the stability of droplets, this process has also greatly increased the cost of ddPCR and limited post-PCR analysis. Here, we report a novel method known as gel capsule-based digital PCR (gc-dPCR) which includes a method to prepare hydrogel capsules encapsulating the PCR reaction mix, conducting PCR reaction, and readout by either quantitative PCR (qPCR) system or fluorescence microplate reader. We have compared the developed method to vortex ddPCR. Our approach results in higher fluorescence intensity compared to ddPCR suggesting higher sensitivity of the system. As hydrogel capsules are more stable than droplets in fluorinated oil throughout thermal cycling, all partitions can be quantified, thus preventing loss of information from low-concentration samples. The new approach should extend to all droplet-based PCR methods. It has greatly improved ddPCR by increasing droplets stability and sensitivity, and reducing the cost of ddPCR, which help to remove the barrier of ddPCR in settings with limited resources.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。