Optical force brush enabled free-space painting of 4D functional structures

光学力刷实现 4D 功能结构的自由空间绘画

阅读:5
作者:Chenqi Yi, Shuyuan Qu, Yaoyu Wang, Haoning Qi, Yufeng Zhang, Gary J Cheng

Abstract

Femtosecond laser-based technique called two-photon polymerization (TPP) has emerged as a powerful tool for nanofabrication and integrating nanomaterials. However, challenges persist in existing three-dimensional (3D) nanoprinting methods, such as slow layer-by-layer printing and limited material options due to laser-matter interactions. Here, we present an approach to 3D nanoprinting called free-space nanopainting, using an optical force brush (OFB). OFB enables precise spatial writing paths, instantaneous adjustment of linewidths and concentrations, and unrestricted resolution beyond optical limits. OFB allows rapid aggregation and solidification of radicals, resulting in narrower lines at lower polymerization thresholds and enhanced sensitivity to laser energy. This advancement enables high-accuracy free-space painting, analogous to Chinese brush painting on paper. The printing speed is increased substantially compared to layer-by-layer methods, from 100 to 1000 times faster. We successfully printed various bionic muscle models derived from 4D nanostructures with tunable mechanical properties, responsive to electrical signals, and excellent biocompatibility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。