Characterization of Inflammasomes and Their Regulation in the Red Fox

赤狐炎症小体的表征及其调控

阅读:5
作者:Huijeong Ahn, Dong-Hyuk Jeong, Gilyoung Lee, Suk-Jin Lee, Jeong-Jin Yang, Yo-Han Kim, Tae-Wook Hahn, Sooyoung Choi, Geun-Shik Lee

Background

Inflammasomes recognize endogenous and exogenous danger signals, and subsequently induce the secretion of IL-1β. Studying inflammasomes in the red fox (Vulpes vulpes) is crucial for wildlife veterinary medicine, as it can help control inflammatory diseases in foxes.

Conclusions

These findings suggest that NLRP3 may have a common role in dsDNA- and flagellin-mediated inflammasome activation in the red fox. It implies that this fox inflammasome biology can be applied to the treatment of inflammasome-mediated diseases in the red fox.

Methods

We investigated the activation and intracellular mechanisms of three inflammasomes (NLRP3, AIM2, and NLRC4) in fox peripheral blood mononuclear cells (PBMCs), using established triggers and inhibitors derived from humans and mice.

Results

Fox PBMCs exhibited normal activation and induction of IL-1β secretion in response to representative inflammasome triggers (ATP and nigericin for NLRP3, dsDNA for AIM2, flagellin for NLRC4). Additionally, PBMCs showed normal IL-1β secretion when inoculated with inflammasome-activating bacteria. In inhibitors of the inflammasome signaling pathway, fox inflammasome activation was compared with mouse inflammasomes. MCC950, a selective NLRP3 inhibitor, suppressed the secretion of dsDNA- and flagellin-mediated IL-1β in foxes, unlike mice. Conclusions: These findings suggest that NLRP3 may have a common role in dsDNA- and flagellin-mediated inflammasome activation in the red fox. It implies that this fox inflammasome biology can be applied to the treatment of inflammasome-mediated diseases in the red fox.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。