Nonspecificity fingerprints for clinical-stage antibodies in solution

溶液中临床阶段抗体的非特异性指纹

阅读:6
作者:Therese W Herling, Gaetano Invernizzi, Hannes Ausserwöger, Jais Rose Bjelke, Thomas Egebjerg, Søren Lund, Nikolai Lorenzen, Tuomas P J Knowles

Abstract

Monoclonal antibodies (mAbs) have successfully been developed for the treatment of a wide range of diseases. The clinical success of mAbs does not solely rely on optimal potency and safety but also require good biophysical properties to ensure a high developability potential. In particular, nonspecific interactions are a key developability parameter to monitor during discovery and development. Despite an increased focus on the detection of nonspecific interactions, their underlying physicochemical origins remain poorly understood. Here, we employ solution-based microfluidic technologies to characterize a set of clinical-stage mAbs and their interactions with commonly used nonspecificity ligands to generate nonspecificity fingerprints, providing quantitative data on the underlying physical chemistry. Furthermore, the solution-based analysis enables us to measure binding affinities directly, and we evaluate the contribution of avidity in nonspecific binding by mAbs. We find that avidity can increase the apparent affinity by two orders of magnitude. Notably, we find that a subset of these highly developed mAbs show nonspecific electrostatic interactions, even at physiological pH and ionic strength, and that they can form microscale particles with charge-complementary polymers. The group of mAb constructs flagged here for nonspecificity are among the worst performers in independent reports of surface and column-based screens. The solution measurements improve on the state-of-the-art by providing a stand-alone result for individual mAbs without the need to benchmark against cohort data. Based on our findings, we propose a quantitative solution-based nonspecificity score, which can be integrated in the development workflow for biological therapeutics and more widely in protein engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。