Characterising the effects of in vitro mechanical stimulation on morphogenesis of developing limb explants

表征体外机械刺激对发育肢体外植体形态发生的影响

阅读:6
作者:Vikesh V Chandaria, James McGinty, Niamh C Nowlan

Abstract

Mechanical forces due to fetal movements play an important role in joint shape morphogenesis, and abnormalities of the joints relating to abnormal fetal movements can have long-term health implications. While mechanical stimulation during development has been shown to be important for joint shape, the relationship between the quantity of mechanical stimulation and the growth and shape change of developing cartilage has not been quantified. In this study, we culture embryonic chick limb explants in vitro in order to reveal how the magnitude of applied movement affects key aspects of the developing joint shape. We hypothesise that joint shape is affected by movement magnitude in a dose-dependent manner, and that a movement regime most representative of physiological fetal movements will promote characteristics of normal shape development. Chick hindlimbs harvested at seven days of incubation were cultured for six days, under either static conditions or one of three different dynamic movement regimes, then assessed for joint shape, cell survival and proliferation. We demonstrate that a physiological magnitude of movement in vitro promotes the most normal progression of joint morphogenesis, and that either under-stimulation or over-stimulation has detrimental effects. Providing insight into the optimal level of mechanical stimulation for cartilage growth and morphogenesis is pertinent to gaining a greater understanding of the etiology of conditions such as developmental dysplasia of the hip, and is also valuable for cartilage tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。