CRISPR-based engineering of phages for in situ bacterial base editing

基于 CRISPR 的噬菌体工程用于原位细菌碱基编辑

阅读:8
作者:Matthew A Nethery, Claudio Hidalgo-Cantabrana, Avery Roberts, Rodolphe Barrangou

Abstract

Investigation of microbial gene function is essential to the elucidation of ecological roles and complex genetic interactions that take place in microbial communities. While microbiome studies have increased in prevalence, the lack of viable in situ editing strategies impedes experimental progress, rendering genetic knowledge and manipulation of microbial communities largely inaccessible. Here, we demonstrate the utility of phage-delivered CRISPR-Cas payloads to perform targeted genetic manipulation within a community context, deploying a fabricated ecosystem (EcoFAB) as an analog for the soil microbiome. First, we detail the engineering of two classical phages for community editing using recombination to replace nonessential genes through Cas9-based selection. We show efficient engineering of T7, then demonstrate the expression of antibiotic resistance and fluorescent genes from an engineered λ prophage within an Escherichia coli host. Next, we modify λ to express an APOBEC-1-based cytosine base editor (CBE), which we leverage to perform C-to-T point mutations guided by a modified Cas9 containing only a single active nucleolytic domain (nCas9). We strategically introduce these base substitutions to create premature stop codons in-frame, inactivating both chromosomal (lacZ) and plasmid-encoded genes (mCherry and ampicillin resistance) without perturbation of the surrounding genomic regions. Furthermore, using a multigenera synthetic soil community, we employ phage-assisted base editing to induce host-specific phenotypic alterations in a community context both in vitro and within the EcoFAB, observing editing efficiencies from 10 to 28% across the bacterial population. The concurrent use of a synthetic microbial community, soil matrix, and EcoFAB device provides a controlled and reproducible model to more closely approximate in situ editing of the soil microbiome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。