Methods
1) adsorption, 2) entrapment-based alginate immobilization, 3) SulfoLink-, and 4) AminoLink-based covalent bonding immobilization techniques were compared to develop the optimum application of EndoBI-1 to food processes. The yield of enzyme immobilization and the activity of each immobilized enzyme by different approaches were investigated. The N-glycans released from lactoperoxidase (LPO) using different immobilized enzyme forms were characterized using MALDI-TOF mass spectrometry (MS). As expected, regardless of the techniques, the enzyme activity decreased after the immobilization methods. The enzyme activity of adsorption and entrapment-based alginate immobilization was found to be 71.55% ± 0.6 and 20.32% ± 3.18, respectively, whereas the activity of AminoLink- and SulfoLink-based covalent bonding immobilization was found to be 58.05 ± 1.98 and 47.49% ± 0.30 compared to the free form of the enzyme, respectively. However, extended incubation time recovery achieved activity similar to that of the free form. More importantly, each immobilization method resulted in the same glycan profile containing 11 different N-glycan structures from a model glycoprotein LPO based on MALDI-TOF MS analysis. The glycan data analysis suggests that immobilization of EndoBI-1 is not affecting the enzyme specificity, which enables full glycan release without a limitation. Hence, different immobilization methods investigated in this study can be chosen for effective enzyme immobilization to obtain bioactive glycans. These findings highlight that further optimization of these methods can be a promising approach for future processing scale-up and commercialization of EndoBI-1 and similar enzymes.
