Machine learning using convolutional neural networks for SERS analysis of biomarkers in medical diagnostics

使用卷积神经网络进行机器学习,对医学诊断中的生物标志物进行 SERS 分析

阅读:6
作者:Joy Qiaoyi Li, Priya Vohra Dukes, Walter Lee, Michael Sarkis, Tuan Vo-Dinh

Abstract

Surface-enhanced Raman spectroscopy (SERS) has wide diagnostic applications because of narrow spectral features that allow multiplexed analysis. Machine learning (ML) has been used for non-dye-labeled SERS spectra but has not been applied to SERS dye-labeled materials with known spectral shapes. Here, we compare the performances of spectral decomposition, support vector regression, random forest regression, partial least squares regression, and convolutional neural network (CNN) for SERS "spectral unmixing" from a multiplexed mixture of 7 SERS-active "nanorattles" loaded with different dyes for mRNA biomarker detection. We showed that CNN most accurately determined relative contributions of each distinct dye-loaded nanorattle. CNN and comparative models were then used to analyze SERS spectra from a singleplexed, point-of-care assay detecting an mRNA biomarker for head and neck cancer in 20 samples. The CNN, trained on simulated multiplexed data, determined the correct dye contributions from the singleplex assay with RMSElabel = 6.42 × 10-2. These results demonstrate the potential of CNN-based ML to advance SERS-based diagnostics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。