Selective ablation of type 3 adenylyl cyclase in somatostatin-positive interneurons produces anxiety- and depression-like behaviors in mice

生长抑素阳性中间神经元中 3 型腺苷酸环化酶的选择性消融会导致小鼠产生焦虑和抑郁样行为

阅读:7
作者:Xiao-Yu Yang, Zhao-Liang Ma, Daniel R Storm, Hong Cao, Yu-Qiu Zhang

Aim

To determine if disruption of the AC3 gene in different subtypes of GABAergic interneurons of mice causes depression-like behaviors.

Background

Major depressive disorder (MDD) is a highly disabling psychiatric syndrome associated with deficits of specific subpopulations of cortical GABAergic interneurons; however, the underlying molecular mechanism remains unknown. Type 3 adenylyl cyclase (ADCY3, AC3), which is important for neuronal excitability, has been implicated in MDD in a genome-wide association study in humans. Moreover, a study reported that ablation of AC3 in mice caused similar symptoms as MDD patients.

Conclusion

This study indicates that ablation of AC3 in SST+ interneurons of mice increases anxiety- and depression-like behaviors in mice, supporting the general hypothesis that decreased AC3 activity may play a role in human depression.

Methods

Using immunohistochemistry, we investigated the expression of AC3 in two major subtypes GABAergic interneurons: Somatostatin-positive (SST+) and parvalbumin-positive (PV+) neurons. Genetic manipulations were used to selectively disrupt AC3 expression in SST+ or PV+ interneurons. A series of behavior tests including rotarod test, open field test (OFT), elevated plus maze test (EPM), forced swimming test (FST), and tail suspension test (TST) were used to evaluate the motor ability, anxiety- and depression- like behaviors, respectively.

Results

Our results indicate that approximately 90.41% of SST+ and 91.22% of PV+ interneurons express AC3. After ablation of AC3 in SST+ interneurons, the mice spent comparable time in the center area in OFT, but significantly less time in the open arms and low frequency of entries to the open arms in EPM. Furthermore, these mice showed prolonged immobility in FST and more freezing in TST. However, there were no significant changes in these behaviors after specific disruption of AC3 in PV+ interneurons.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。