Comparison of standard exponential and linear techniques to amplify small cDNA samples for microarrays

比较标准指数和线性技术对微阵列小 cDNA 样本的扩增

阅读:8
作者:Johan Wadenbäck, David H Clapham, Deborah Craig, Ronald Sederoff, Gary F Peter, Sara von Arnold, Ulrika Egertsdotter

Background

The need to perform microarray experiments with small amounts of tissue has led to the development of several protocols for amplifying the target transcripts. The use of different amplification protocols could affect the comparability of microarray experiments.

Conclusion

Amplification with T7 transcription better reflects the variation of the unamplified transcriptome than PCR based methods owing to the better representation of long transcripts. If transcripts of particular interest are known to have high GC content and are of limited length, however, PCR-based methods may be preferable.

Results

Here we compare expression data from Pinus taeda cDNA microarrays using transcripts amplified either exponentially by PCR or linearly by T7 transcription. The amplified transcripts vary significantly in estimated length, GC content and expression depending on amplification technique. Amplification by T7 RNA polymerase gives transcripts with a greater range of lengths, greater estimated mean length, and greater variation of expression levels, but lower average GC content, than those from PCR amplification. For genes with significantly higher expression after T7 transcription than after PCR, the transcripts were 27% longer and had about 2 percentage units lower GC content. The correlation of expression intensities between technical repeats was high for both methods (R2 = 0.98) whereas the correlation of expression intensities using the different methods was considerably lower (R2 = 0.52). Correlation of expression intensities between amplified and unamplified transcripts were intermediate (R2 = 0.68-0.77).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。