Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy

治疗性沉默 miR-652 可恢复心脏功能,并减轻已确定的病理性肥大情况下的不良重塑

阅读:8
作者:Bianca C Bernardo, Sally S Nguyen, Catherine E Winbanks, Xiao-Ming Gao, Esther J H Boey, Yow Keat Tham, Helen Kiriazis, Jenny Y Y Ooi, Enzo R Porrello, Sindhu Igoor, Colleen J Thomas, Paul Gregorevic, Ruby C Y Lin, Xiao-Jun Du, Julie R McMullen

Abstract

Expression of microRNA-652 (miR-652) increases in the diseased heart, decreases in a setting of cardioprotection, and is inversely correlated with heart function. The aim of this study was to assess the therapeutic potential of inhibiting miR-652 in a mouse model with established pathological hypertrophy and cardiac dysfunction due to pressure overload. Mice were subjected to a sham operation or transverse aortic constriction (TAC) for 4 wk to induce hypertrophy and cardiac dysfunction, followed by administration of a locked nucleic acid (LNA)-antimiR-652 (miR-652 inhibitor) or LNA control. Cardiac function was assessed before and 8 wk post-treatment. Expression of miR-652 increased in hearts subjected to TAC compared to sham surgery (2.9-fold), and this was suppressed by ∼95% in LNA-antimiR-652-treated TAC mice. Inhibition of miR-652 improved cardiac function in TAC mice (fractional shortening:29±1% at 4 wk post-TAC compared to 35±1% post-treatment) and attenuated cardiac hypertrophy. Improvement in heart function was associated with reduced cardiac fibrosis, less apoptosis and B-type natriuretic peptide gene expression, and preserved angiogenesis. Mechanistically, we identified Jagged1 (a Notch1 ligand) as a novel direct target of miR-652. In summary, these studies provide the first evidence that silencing of miR-652 protects the heart against pathological remodeling and improves heart function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。