Rapid antibiotic susceptibility testing based on bacterial motion patterns with long short-term memory neural networks

基于细菌运动模式和长短期记忆神经网络的快速抗生素敏感性测试

阅读:7
作者:Rafael Iriya #, Wenwen Jing #, Karan Syal, Manni Mo, Chao Chen, Hui Yu, Shelley E Haydel, Shaopeng Wang, Nongjian Tao

Abstract

Antibiotic resistance is an increasing public health threat. To combat it, a fast method to determine the antibiotic susceptibility of infecting pathogens is required. Here we present an optical imaging-based method to track the motion of single bacterial cells and generate a model to classify active and inactive cells based on the motion patterns of the individual cells. The model includes an image-processing algorithm to segment individual bacterial cells and track the motion of the cells over time, and a deep learning algorithm (Long Short-Term Memory network) to learn and determine if a bacterial cell is active or inactive. By applying the model to human urine specimens spiked with an Escherichia coli lab strain, we show that the method can accurately perform antibiotic susceptibility testing as fast as 30 minutes for five commonly used antibiotics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。