Biomimetic nucleus pulposus scaffold created from bovine caudal intervertebral disc tissue utilizing an optimal decellularization procedure

采用最佳脱细胞程序由牛尾椎间盘组织制成的仿生髓核支架

阅读:5
作者:Christopher Fernandez, Alan Marionneaux, Sanjitpal Gill, Jeremy Mercuri

Abstract

Intervertebral disc (IVD) degeneration (IDD) and herniation (IDH) can result in low back pain and impart significant socioeconomic burden. These pathologies involve detrimental alteration to the nucleus pulposus (NP) either via biochemical degradation or extrusion from the IVD, respectively. Thus, engineering living NP tissue utilizing biomaterial scaffolds that recapitulate native NP microarchitecture, biochemistry, mechanical properties, and which support cell viability represents an approach to aiding patients with IDD and IDH. To date, an ideal biomaterial to support NP regeneration has yet to be developed; however, one promising approach to generating biomimetic materials is to employ the decellularization (decell) of xenogeneic NP tissue to remove host DNA while maintaining critical native extracellular matrix (ECM) components. Herein, 13 different procedures were evaluated in an attempt to decell bovine caudal IVD NP tissue. An optimal method was identified which was confirmed to effectively remove bovine DNA, while maintaining physiologically relevant amounts of glycosaminoglycan (GAG) and type II collagen. Unconfined static and dynamic compressive mechanical properties of scaffolds approached values reported for human NP and viability of human amniotic stem cells (hAMSCs) was maintained on noncrosslinked and EDC/NHS treated scaffolds for up to 14 days in culture. Taken together, NP tissue obtained from bovine caudal IVDs can be successfully decelled in order to generate a biomimetic scaffold for NP tissue regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3093-3106, 2016.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。