miR-26b Targets CEP135 Gene to Regulate Nasopharyngeal Carcinoma Proliferation and Migration by NF-κB Pathway

miR-26b靶向CEP135基因通过NF-κB通路调控鼻咽癌增殖和迁移

阅读:6
作者:Guangrun Yang, Jiafu Zhou, Zhong Guo, Lixia Fan, Bowen Chen, Dapeng Zhang, Haitao Wen

Abstract

To screen microRNAs (miRNAs) and analyze their role in the nasopharyngeal carcinoma (NPC) development through differential analysis and cytological validation of the nasopharyngeal carcinoma dataset. The Gene Expression Omnibus (GEO) database of NPC-related data were utilized to screen for differential miRNAs, downstream target genes and relevant pathways, and the relationships among them were verified by luciferase reporter assay and cell co-culture. To analyze the function of miRNAs and downstream target genes, a series of mimics, inhibitors or Small interfering RNAs (siRNAs) targeting the downstream target genes were transfected into NPC cells or normal epithelial cells by cell transfection techniques. Cell Counting Kit-8 (CCK8), Transwell, Enzyme-linked immunosorbent assay (ELISA) apoptosis, and western blotting were adopted to determine the changes in cell activity, invasiveness, and apoptosis after differential miRNA and target gene overexpression or downregulation. Differential analysis of miRNA dataset showed that the expression of miR-26b was significantly downregulated in NPC, in agreement with the validation results of nasopharyngeal carcinoma cell lines. And downregulation of miR-26b expression in normal nasopharyngeal epithelial cells transformed the cells to tumors. CEP135 was identified as the miR-26b downstream target gene by mRNA dataset analysis, and a luciferase reporter test revealed a direct targeting link between the two. Upregulation of CEP135 levels in nasopharyngeal cancer cell lines increased cell activity, accelerated cell migration, and inhibited apoptosis. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that CEP135 exerted the above effects on cells via the NF-κB pathway, and co-culture with NF-κB pathway blockers reversed cell biological behavior to the level of the control group. MiR-26b downregulation leads to CEP135 overexpression and NF-κB pathway activation in NPC, which enhances proliferation, migration, and prevents apoptosis of nasopharyngeal carcinoma cells. Therefore, the study further clarifies the biological behavior mechanism of NPC and suggests new therapeutic options for NPC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。