Natural killer T cell activation overcomes immunosuppression to enhance clearance of postsurgical breast cancer metastasis in mice

自然杀伤 T 细胞活化可克服免疫抑制,增强小鼠术后乳腺癌转移的清除

阅读:13
作者:Simon Gebremeskel, Daniel R Clattenburg, Drew Slauenwhite, Lynnea Lobert, Brent Johnston

Abstract

Metastatic lesions are responsible for over 90% of breast cancer associated deaths. Therefore, strategies that target metastasis are of particular interest. This study examined the efficacy of natural killer T (NKT) cell activation as a post-surgical immunotherapy in a mouse model of metastatic breast cancer. Following surgical resection of orthotopic 4T1 mammary carcinoma tumors, BALB/c mice were treated with NKT cell activating glycolipid antigens (α-GalCer, α-C-GalCer or OCH) or α-GalCer-loaded dendritic cells (DCs). Low doses of glycolipids transiently reduced metastasis but did not increase survival. A high dose of α-GalCer enhanced overall survival, but was associated with increased toxicity and mortality at early time points. Treatment with α-GalCer-loaded DCs limited tumor metastasis, prolonged survival, and provided curative outcomes in ∼45% of mice. However, survival was not increased further by additional DC treatments or co-transfer of expanded NKT cells. NKT cell activation via glycolipid-loaded DCs decreased the frequency and immunosuppressive activity of myeloid derived suppressor cells (MDSCs) in tumor-resected mice. In vitro, NKT cells were resistant to the immunosuppressive effects of MDSCs and were able to reverse the inhibitory effects of MDSCs on T cell proliferation. NKT cell activation enhanced antitumor immunity in tumor-resected mice, increasing 4T1-specific cytotoxic responses and IFNγ production from natural killer (NK) cells and CD8+ T cells. Consistent with increased tumor immunity, mice surviving to day 150 were resistant to a second tumor challenge. This work provides a clear rationale for manipulating NKT cells to target metastatic disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。