Synthesis of an insulin-loaded mucoadhesive nanoparticle designed for intranasal administration: focus on new diffusion media

用于鼻腔给药的载胰岛素粘膜粘附纳米颗粒的合成:重点关注新型扩散介质

阅读:3
作者:Tahereh Jamshidnejad-Tosaramandani, Soheila Kashanian, Isaac Karimi, Helgi B Schiöth

Abstract

Intranasal administration is a drug delivery approach to provide a non-invasive pharmacological response in the central nervous system with relatively small peripheral side effects. To improve the residence time of intranasal drug delivery systems in the nasal mucosa, mucoadhesive polymers (e.g., chitosan) can be used. Here, insulin-loaded chitosan nanoparticles were synthesized and their physiochemical properties were evaluated based on requirements of intranasal administration. The nanoparticles were spherical (a hydrodynamic diameter of 165.3 nm, polydispersity index of 0.24, and zeta potential of +21.6 mV) that granted mucoadhesion without any noticeable toxicity to the nasal tissue. We applied a new approach using the Krebs-Henseleit buffer solution along with simulated nasal fluid in a Franz's diffusion cell to study this intranasal drug delivery system. We used the Krebs-Henseleit buffer because of its ability to supply glucose to the cells which serves as a novel ex vivo diffusion medium to maintain the viability of the tissue during the experiment. Based on diffusion rate and histopathological endpoints, the Krebs-Henseleit buffer solution can be a substituent solution to the commonly used simulated nasal fluid for such drug delivery systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。