Prioritizing Crohn's disease genes by integrating association signals with gene expression implicates monocyte subsets

通过将关联信号与基因表达整合来优先考虑克罗恩氏病基因,暗示单核细胞亚群

阅读:4
作者:Kyle Gettler, Mamta Giri, Ephraim Kenigsberg, Jerome Martin, Ling-Shiang Chuang, Nai-Yun Hsu, Lee A Denson, Jeffrey S Hyams, Anne Griffiths, Joshua D Noe, Wallace V Crandall, David R Mack, Richard Kellermayer, Clara Abraham, Gabriel Hoffman, Subra Kugathasan, Judy H Cho

Abstract

Genome-wide association studies have identified ~170 loci associated with Crohn's disease (CD) and defining which genes drive these association signals is a major challenge. The primary aim of this study was to define which CD locus genes are most likely to be disease related. We developed a gene prioritization regression model (GPRM) by integrating complementary mRNA expression datasets, including bulk RNA-Seq from the terminal ileum of 302 newly diagnosed, untreated CD patients and controls, and in stimulated monocytes. Transcriptome-wide association and co-expression network analyses were performed on the ileal RNA-Seq datasets, identifying 40 genome-wide significant genes. Co-expression network analysis identified a single gene module, which was substantially enriched for CD locus genes and most highly expressed in monocytes. By including expression-based and epigenetic information, we refined likely CD genes to 2.5 prioritized genes per locus from an average of 7.8 total genes. We validated our model structure using cross-validation and our prioritization results by protein-association network analyses, which demonstrated significantly higher CD gene interactions for prioritized compared with non-prioritized genes. Although individual datasets cannot convey all of the information relevant to a disease, combining data from multiple relevant expression-based datasets improves prediction of disease genes and helps to further understanding of disease pathogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。