Enhancement of Monascus yellow pigments production by activating the cAMP signalling pathway in Monascus purpureus HJ11

通过激活红曲霉 HJ11 中的 cAMP 信号通路增强红曲霉黄色素的产生

阅读:5
作者:Jiawei Liu, Yun Du, Hongmin Ma, Xiaolin Pei, Mu Li

Background

Monascus azaphilone pigments (MonAzPs), which were produced by Monascus species, have been used as important food colorant and food supplements for more than one billion people during their daily life. Moreover, MonAzPs recently have received more attention because of their diverse physiological activities. However, the high microbial production of MonAzPs is still not always guaranteed. Herein, the

Conclusions

A engineered M. purpureus strain for high MonAzPs production was successfully developed by activating the cAMP signalling pathway. This study not only describes a novel strategy for development of MonAzPs-producing strain, but also provides a roadmap for engineering efforts towards the production of secondary metabolism in other filamentous fungi.

Results

In this study, exogenous cyclic adenosine monophosphate (cAMP) treatment not only induced MonAzPs production, but also stimulated the expression of a cAMP phosphodiesterase gene, named as mrPDE, in M. purpureus HJ11. Subsequently, MrPDE was identified as a cAMP phosphodiesterase by in vitro enzymatic reaction with purified enzyme. Further, a gene knockout mutant of mrPDE was constructed to verify the activation of cAMP signalling pathway. Deletion of mrPDE in M. purpureus HJ11 improved cAMP concentration by 378% and enhanced PKA kinase activity 1.5-fold, indicating that activation of cAMP signalling pathway was achieved. The ΔmrPDE strain produced MonAzPs at 8563 U/g, with a 2.3-fold increase compared with the WT strain. Moreover, the NAPDH/NADP+ ratio of the ΔmrPDE strain was obviously higher than that of the wild type strain, which led to a higher proportion of yellow MonAzPs. With fed-batch fermentation of the ΔmrPDE strain, the production and yield of MonAzPs achieved 332.1 U/mL and 8739 U/g. Conclusions: A engineered M. purpureus strain for high MonAzPs production was successfully developed by activating the cAMP signalling pathway. This study not only describes a novel strategy for development of MonAzPs-producing strain, but also provides a roadmap for engineering efforts towards the production of secondary metabolism in other filamentous fungi.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。