Mevalonate inhibits acid sphingomyelinase activity, increases sphingomyelin levels and inhibits cell proliferation of HepG2 and Caco-2 cells

甲羟戊酸抑制酸性鞘磷脂酶活性,增加鞘磷脂水平,抑制 HepG2 和 Caco-2 细胞增殖

阅读:8
作者:Ying Chen, Shu-Chang Xu, Rui-Dong Duan

Background

Sphingomyelin (SM) and cholesterol are two types of lipid closely related biophysically. Treating the cells with exogenous sphingomyelinase (SMase) induces trafficking of cholesterol from membrane to intracellular pools and inhibition of cholesterol synthesis. In the present work, we address a question whether increased cholesterol synthesis affects hydrolysis of SM by endogenous SMases.

Conclusion

Mevalonate can trigger a mechanism to enhance SM levels by inhibition of acid SMase. The effect may ensure the coordinate changes of SM and cholesterol in the cells. Mevalonate also affects cell growth with mechanism required further characterization.

Methods

Both HepG2 and Caco-2 cells were incubated with mevalonate. The SMase activity was determined and its mRNA examined by qPCR. The cellular levels of cholesterol, SM, and phosphatidylcholine (PC) were determined and cell proliferation rate assayed.

Results

We found that mevalonate dose-dependently decreased acid but not neutral SMase activity in both HepG2 and Caco-2 cells with HepG2 cells being more sensitive to mevalonate. Kinetic examination in HepG2 cells revealed that acid SMase activity was increasing with cell proliferation, and such an increase was reversed by mevalonate treatment. Acid SMase mRNA was not significantly decreased and Western blot showed signs of proteolysis of acid SMase by mevalonate. After mevalonate treatment, the levels of cholesterol were significantly increased associated with increases in SM and PC. The cell growth was retarded by mevalonate and the effect was more obvious in HepG2 cells than in Caco-2 cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。