Integrated Approach for Testing and Assessment for Developmental Neurotoxicity (DNT) to Prioritize Aromatic Organophosphorus Flame Retardants

采用发育神经毒性 (DNT) 测试和评估综合方法对芳香族有机磷阻燃剂进行优先排序

阅读:5
作者:Anna Kreutz, Oluwakemi B Oyetade, Xiaoqing Chang, Jui-Hua Hsieh, Mamta Behl, David G Allen, Nicole C Kleinstreuer, Helena T Hogberg

Abstract

Organophosphorus flame retardants (OPFRs) are abundant and persistent in the environment but have limited toxicity information. Their similarity in structure to organophosphate pesticides presents great concern for developmental neurotoxicity (DNT). However, current in vivo testing is not suitable to provide DNT information on the amount of OPFRs that lack data. Over the past decade, an in vitro battery was developed to enhance DNT assessment, consisting of assays that evaluate cellular processes in neurodevelopment and function. In this study, behavioral data of small model organisms were also included. To assess if these assays provide sufficient mechanistic coverage to prioritize chemicals for further testing and/or identify hazards, an integrated approach to testing and assessment (IATA) was developed with additional information from the Integrated Chemical Environment (ICE) and the literature. Human biomonitoring and exposure data were identified and physiologically-based toxicokinetic models were applied to relate in vitro toxicity data to human exposure based on maximum plasma concentration. Eight OPFRs were evaluated, including aromatic OPFRs (triphenyl phosphate (TPHP), isopropylated phenyl phosphate (IPP), 2-ethylhexyl diphenyl phosphate (EHDP), tricresyl phosphate (TMPP), isodecyl diphenyl phosphate (IDDP), tert-butylphenyl diphenyl phosphate (BPDP)) and halogenated FRs ((Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-chloroethyl) phosphate (TCEP)). Two representative brominated flame retardants (BFRs) (2,2'4,4'-tetrabromodiphenyl ether (BDE-47) and 3,3',5,5'-tetrabromobisphenol A (TBBPA)) with known DNT potential were selected for toxicity benchmarking. Data from the DNT battery indicate that the aromatic OPFRs have activity at similar concentrations as the BFRs and should therefore be evaluated further. However, these assays provide limited information on the mechanism of the compounds. By integrating information from ICE and the literature, endocrine disruption was identified as a potential mechanism. This IATA case study indicates that human exposure to some OPFRs could lead to a plasma concentration similar to those exerting in vitro activities, indicating potential concern for human health.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。