Exosomes Derived from Adipose Mesenchymal Stem Cells Promote Diabetic Chronic Wound Healing through SIRT3/SOD2

脂肪间充质干细胞来源的外泌体通过 SIRT3/SOD2 促进糖尿病慢性伤口愈合

阅读:5
作者:Yue Zhang, Xiaozhi Bai, Kuo Shen, Liang Luo, Ming Zhao, Chaolei Xu, Yanhui Jia, Dan Xiao, Yan Li, Xiaowen Gao, Chenyang Tian, Yunchuan Wang, Dahai Hu

Abstract

Chronic wounds resulting from diabetes are a major health concern in both industrialized and developing countries, representing one of the leading causes of disability and death. This study aimed to investigate the effect of adipose mesenchymal stem cell-derived exosomes (ADSC-exos) on diabetic wounds and the mechanism underlying this effect. The results showed that ADSC-exos could improve oxidative stress and secretion of inflammatory cytokines in diabetic wounds, thereby increasing periwound vascularization and accelerating wound healing. At the cellular level, ADSC-exos reduced reactive oxygen species (ROS) generation in human umbilical vein endothelial cells (HUVECs) and improved mitochondrial function in a high-glucose environment. Moreover, the Western blot analysis showed that the high-glucose environment decreased Sirtuin 3 (SIRT3) expression, while exosome treatment increased SIRT3 expression. The activity of superoxide dismutase 2 (SOD2) was enhanced, and the level of inflammatory cytokines was decreased. Further, SIRT3 interference experiments indicated that the effects of ADSC-exos on oxidative stress and angiogenesis were partly dependent on SIRT3. After SIRT3 was inhibited, ROS production increased, while mitochondrial membrane potential and SOD2 activity decreased. These findings confirmed that ADSC-exos could improve the level of high-glucose-induced oxidative stress, promote angiogenesis, and reduce mitochondrial functional impairment and the inflammatory response by regulating SIRT3/SOD2, thus promoting diabetic wound healing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。