Needle-compatible miniaturized optoelectronic sensor for pancreatic cancer detection

用于检测胰腺癌的针兼容微型光电传感器

阅读:5
作者:Seung Yup Lee, Julia M Pakela, Kyounghwan Na, Jiaqi Shi, Barbara J McKenna, Diane M Simeone, Euisik Yoon, James M Scheiman, Mary-Ann Mycek

Abstract

Pancreatic cancer is one of the deadliest cancers, with a 5-year survival rate of <10%. The current approach to confirming a tissue diagnosis, endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), requires a time-consuming, qualitative cytology analysis and may be limited because of sampling error. We designed and engineered a miniaturized optoelectronic sensor to assist in situ, real-time, and objective evaluation of human pancreatic tissues during EUS-FNA. A proof-of-concept prototype sensor, compatible with a 19-gauge hollow-needle commercially available for EUS-FNA, was constructed using microsized optoelectronic chips and microfabrication techniques to perform multisite tissue optical sensing. In our bench-top verification and pilot validation during surgery on freshly excised human pancreatic tissues (four patients), the fabricated sensors showed a comparable performance to our previous fiber-based system. The flexibility in source-detector configuration using microsized chips potentially allows for various light-based sensing techniques inside a confined channel such as a hollow needle or endoscopy.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。